Hepatic SH2B1 and SH2B2 Regulate Liver Lipid Metabolism and VLDL Secretion in Mice
نویسندگان
چکیده
SH2B1 is an SH2 and PH domain-containing adaptor protein. Genetic deletion of SH2B1 results in obesity, type 2 diabetes, and fatty liver diseases in mice. Mutations in SH2B1 are linked to obesity in humans. SH2B1 in the brain controls energy balance and body weight at least in part by enhancing leptin sensitivity in the hypothalamus. SH2B1 in peripheral tissues also regulates glucose and lipid metabolism, presumably by enhancing insulin sensitivity in peripheral metabolically-active tissues. However, the function of SH2B1 in individual peripheral tissues is unknown. Here we generated and metabolically characterized hepatocyte-specific SH2B1 knockout (HKO) mice. Blood glucose and plasma insulin levels, glucose tolerance, and insulin tolerance were similar between HKO, albumin-Cre, and SH2B1(f/f) mice fed either a normal chow diet or a high fat diet (HFD). Adult-onset deletion of SH2B1 in the liver either alone or in combination with whole body SH2B2 knockout also did not exacerbate HFD-induced insulin resistance and glucose intolerance. Adult-onset, but not embryonic, deletion of SH2B1 in the liver attenuated HFD-induced hepatic steatosis. In agreement, adult-onset deletion of hepatic SH2B1 decreased the expression of diacylglycerol acyltransferase-2 (DGAT2) and increased the expression of adipose triglyceride lipase (ATGL). Furthermore, deletion of liver SH2B1 in SH2B2 null mice attenuated very low-density lipoprotein (VLDL) secretion. These data indicate that hepatic SH2B1 is not required for the maintenance of normal insulin sensitivity and glucose metabolism; however, it regulates liver triacylglycerol synthesis, lipolysis, and VLDL secretion.
منابع مشابه
Reduced insulin-mediated inhibition of VLDL secretion upon pharmacological activation of the liver X receptor in mice.
The nuclear liver X receptor (LXR) regulates multiple aspects of cholesterol, triacylglycerol (TG), and carbohydrate metabolism. Activation of LXR induces the expression of genes encoding enzymes involved in de novo lipogenesis (DNL) resulting in hepatic steatosis in mice. Pharmacological LXR activation has also been reported to improve insulin sensitivity and glucose homeostasis in diabetic ro...
متن کاملHepatic overexpression of sterol carrier protein-2 inhibits VLDL production and reciprocally enhances biliary lipid secretion.
We examined in vivo a role for sterol carrier protein-2 (SCP-2) in the regulation of lipid secretion across the hepatic sinusoidal and canalicular membranes. Recombinant adenovirus Ad.rSCP2 was used to overexpress SCP-2 in livers of mice. We determined plasma, hepatic, and biliary lipid concentrations; hepatic fatty acid (FA) and cholesterol synthesis; hepatic and biliary phosphatidylcholine (P...
متن کاملEvaluation of Diabetogenic Mechanism of High Fat Diet in Combination with Arsenic Exposure in Male Mice
Obesity is a main reason of type 2 diabetes and also chronic exposure to arsenic (As)can produce diabetic symptoms. In previous studies, the association between high-fat dietand arsenic in the incidence of diabetes was found, but the role of beta cells activity, livermitochondrial oxidative stress, and hepatic enzymes (leptin, adiponectin and beta amylase)was unclear. Thus, present study was co...
متن کاملEvaluation of Diabetogenic Mechanism of High Fat Diet in Combination with Arsenic Exposure in Male Mice
Obesity is a main reason of type 2 diabetes and also chronic exposure to arsenic (As)can produce diabetic symptoms. In previous studies, the association between high-fat dietand arsenic in the incidence of diabetes was found, but the role of beta cells activity, livermitochondrial oxidative stress, and hepatic enzymes (leptin, adiponectin and beta amylase)was unclear. Thus, present study was co...
متن کاملAcute inhibition of hepatic beta-oxidation in APOE*3Leiden mice does not affect hepatic VLDL secretion or insulin sensitivity.
Hepatic VLDL and glucose production is enhanced in type 2 diabetes and associated with hepatic steatosis. Whether the derangements in hepatic metabolism are attributable to steatosis or to the increased availability of FA metabolites is not known. We used methyl palmoxirate (MP), an inhibitor of carnitine palmitoyl transferase I, to acutely inhibit hepatic FA oxidation and investigated whether ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013